干热岩开发利用前景诱人
- 2014/4/9 13:49:244938
中国泵阀商务网导读:据消息,经过两年钻探验证,青海省共和盆地中北部地下2230米处,勘查到埋藏浅、温度高的干热岩,这是中国发现的可大规模利用的干热岩资源。据专家介绍,该岩体在共和盆地底部广泛分布,仅钻孔控制干热岩面积已达150平方公里,潜力巨大。
干热岩开发利用前景诱人
随着化石燃料总量的减少及其开发利用带来的环境恶化程度加剧,可再生且无污染的能源倍受人们关注;但是气候的变化、季节的变换,在一定程度上给人们利用这些新能源带来诸多不便。因此,在有利的地区,开发利用无污染且少受诸如气候等外界条件变化干扰的新能源——干热岩,成了很多发达国家积极开展试验研究的新课题。
对很多人来说,干热岩还是个不太熟悉的词汇。开发干热岩资源的原理是从地表往干热岩中打一眼井(注入井),封闭井孔后向井中高压注入温度较低的水,产生了非常高的压力。在岩体致密无裂隙的情况下,高压水会使岩体大致垂直小地应力的方向产生许多裂缝。若岩体中本来就有少量天然节理,这些高压水使之扩充成更大的裂缝。当然,这些裂缝的方向要受地应力系统的影响。
随着低温水的不断注入,裂缝不断增加、扩大,并相互连通,终形成一个大致呈面状的人工干热岩热储构造。在距注入井合理的位置处钻几口井并贯通人工热储构造,这些井用来回收高温水、汽,称之为生产井。注入的水沿着裂隙运动并与周边的岩石发生热交换,产生了温度高达200-300℃的高温高压水或水汽混合物。从贯通人工热储构造的生产井中提取高温蒸汽,用于地热发电和综合利用。利用之后的温水又通过注入井回灌到干热岩中,从而达到循环利用的目的。
干热岩通常埋藏在地表3000至10000米以下,是没有水或蒸气的、致密不渗透的热岩体,温度在150℃至650℃之间,是一种可用于高温发电的清洁资源。有数据表明,地壳中“干热岩”所蕴含的能量相当于所有石油、天然气和煤炭所蕴藏能量的30倍。
利用地下干热岩体发电的设想,是美国人莫顿和史密斯于1970年提出的。1972年,他们在新墨西哥州北部打了两口约4000米的深斜井,从一口井中将冷水注入到干热岩体,从另一口井取出自岩体加热产生的蒸气,功率达2300千瓦。
在法国东部阿尔萨斯地区地下几千米的地方,有一片温度高达200℃以上的花岗岩区。这个地方建立了座利用热岩发电的新型发电站。每年每1立方千米的热岩产生的热量,可发电25兆瓦,足够一座万人城市20年的用电量。
工作人员在这里钻了3眼深井,一直钻到地表5000米以下花岗岩的基岩中。发电时,用水泵以每秒100升的容量从中间的一眼井向地下灌冷水(井的直径为60厘米),迫使冷水进入地下热岩中,这些冷水被地下热岩加热到约200℃。然后,再用水泵将这种超高温热水从另外两眼井抽上来,一旦到达地面,超高温热水就被送入一个热交换器,并在热交换器中产生蒸气驱动涡轮机发电。水泵消耗的总电量,约相当于发电站发出电能的20%。
为了使冷水充分吸收花岗岩的热量,就需要增加水渗入花岗岩缝隙的程度。虽然地下花岗岩非常坚硬,但也有裂纹。钻井后要用150个大气压力的高压水,从井口灌入,迫使高压水进入岩石裂纹,增大裂纹开口。
由于这种新式发电站不燃烧化石燃料,因此不会排放增加温室效应的二氧化碳和其他污染物。虽然冷水变热后可能终会使岩石降低到20℃,因此一处热岩发电站也许只能连续工作20年左右。但在关闭几十年后,地心的炽热岩浆会重新加热这些花岗岩,那时这些热岩就又能重新发电。
利用干热岩发电的成本与以煤炭和天然气为燃料的火力发电站的成本大体相当,是风力发电的一半,只有太阳能发电的八分之一到十分之一。目前,欧美许多发达国家正在积极开展干热岩开发试验研究工作。干热岩开发利用前景十分诱人,科学家预测,2030年左右人类可以利用干热岩大规模发电。
对很多人来说,干热岩还是个不太熟悉的词汇。开发干热岩资源的原理是从地表往干热岩中打一眼井(注入井),封闭井孔后向井中高压注入温度较低的水,产生了非常高的压力。在岩体致密无裂隙的情况下,高压水会使岩体大致垂直小地应力的方向产生许多裂缝。若岩体中本来就有少量天然节理,这些高压水使之扩充成更大的裂缝。当然,这些裂缝的方向要受地应力系统的影响。
随着低温水的不断注入,裂缝不断增加、扩大,并相互连通,终形成一个大致呈面状的人工干热岩热储构造。在距注入井合理的位置处钻几口井并贯通人工热储构造,这些井用来回收高温水、汽,称之为生产井。注入的水沿着裂隙运动并与周边的岩石发生热交换,产生了温度高达200-300℃的高温高压水或水汽混合物。从贯通人工热储构造的生产井中提取高温蒸汽,用于地热发电和综合利用。利用之后的温水又通过注入井回灌到干热岩中,从而达到循环利用的目的。
干热岩通常埋藏在地表3000至10000米以下,是没有水或蒸气的、致密不渗透的热岩体,温度在150℃至650℃之间,是一种可用于高温发电的清洁资源。有数据表明,地壳中“干热岩”所蕴含的能量相当于所有石油、天然气和煤炭所蕴藏能量的30倍。
利用地下干热岩体发电的设想,是美国人莫顿和史密斯于1970年提出的。1972年,他们在新墨西哥州北部打了两口约4000米的深斜井,从一口井中将冷水注入到干热岩体,从另一口井取出自岩体加热产生的蒸气,功率达2300千瓦。
在法国东部阿尔萨斯地区地下几千米的地方,有一片温度高达200℃以上的花岗岩区。这个地方建立了座利用热岩发电的新型发电站。每年每1立方千米的热岩产生的热量,可发电25兆瓦,足够一座万人城市20年的用电量。
工作人员在这里钻了3眼深井,一直钻到地表5000米以下花岗岩的基岩中。发电时,用水泵以每秒100升的容量从中间的一眼井向地下灌冷水(井的直径为60厘米),迫使冷水进入地下热岩中,这些冷水被地下热岩加热到约200℃。然后,再用水泵将这种超高温热水从另外两眼井抽上来,一旦到达地面,超高温热水就被送入一个热交换器,并在热交换器中产生蒸气驱动涡轮机发电。水泵消耗的总电量,约相当于发电站发出电能的20%。
为了使冷水充分吸收花岗岩的热量,就需要增加水渗入花岗岩缝隙的程度。虽然地下花岗岩非常坚硬,但也有裂纹。钻井后要用150个大气压力的高压水,从井口灌入,迫使高压水进入岩石裂纹,增大裂纹开口。
由于这种新式发电站不燃烧化石燃料,因此不会排放增加温室效应的二氧化碳和其他污染物。虽然冷水变热后可能终会使岩石降低到20℃,因此一处热岩发电站也许只能连续工作20年左右。但在关闭几十年后,地心的炽热岩浆会重新加热这些花岗岩,那时这些热岩就又能重新发电。
利用干热岩发电的成本与以煤炭和天然气为燃料的火力发电站的成本大体相当,是风力发电的一半,只有太阳能发电的八分之一到十分之一。目前,欧美许多发达国家正在积极开展干热岩开发试验研究工作。干热岩开发利用前景十分诱人,科学家预测,2030年左右人类可以利用干热岩大规模发电。