泵阀商务网

登录

透过一世纪 看污水处理的前世今生

2016/1/15 19:48:4331745
来源:水博网微信 作者:MUR


  
  随后,Goranzy教授开发了CASS/CAST工艺。与ICEAS工艺类似,在反应池前段增加了一个选择段,污水先与来自主反应区的回流混合液在选择段混合,在厌氧条件下,选择段相当于前置厌氧池,为除磷创造了有利条件。
  
  90年代,比利时的西格斯公司在三沟式氧化沟的基础上开发了UNITANK系统。它由3个矩形池组成,其中外边两侧的矩形池既可做曝气池,又可做沉淀池,中间一个矩形池只做曝气池该工艺把传统SBR的时间推流与连续系统的空间推流有效地结合了起来。
  
  MSBR法即改良型的SBR(ModifiedSBR),采用单池多格方式,结合了传统活性污泥法和SBR技术的优点。反应器由曝气格和两个交替序批处理格组成。主曝气格在整个运行周期过程中保持连续曝气,而每半个周期过程中,两个序批处理格交替分别作为SBR和澄清池。该工艺可连续进水且可使用更少的连接管、泵和阀门。
  
  脱氮除磷新工艺
  
  近几十年,能源、资源的短缺已经引起了广泛的关注,进一步脱氮除磷及对能源节约及资源回收的需求成为了污水处理工艺发展的主流方向。一批新兴脱氮除磷技术得以应用。
  
  ANAMMOX-SHARON组合工艺。

  
  1994年,荷兰Delft大学开发了厌氧氨氧化(ANAMMOX)技术,厌氧氨氧化菌在缺氧环境中,能够将铵离子(NH4 )用亚硝酸根(NO2-)氧化为氮气。
  
  该工艺与传统反硝化工艺相比是完全自养,不需任何有机碳源。
  
  1998年,荷兰Delft大学基于短程硝化反硝化原理开发了SHARON工艺,首例工程在荷兰鹿特丹DOKHAVEN水厂。其基本原理是在同一反应器内,先在有氧条件下利用亚硝化细菌将氨氧化成NO2-;然后再在缺氧条件下已有机物为电子供体将亚硝酸盐反硝化,形成氮气。工艺流程缩短且无需加碱中和。与传统活性污泥法相比可减少25%的供氧量及40%的反硝化碳源,有利于资源能源的回收利用,更适用于碳氮比浓度较低的城市废水。

  
  目前,以SHARON工艺为硝化反应器,ANAMMOX工艺为反硝化反应器,与传统工艺相比能够节省60%的供氧和100%的碳源。
  
  三级处理阶段
  
  近十几年,随着污染加剧,水资源短缺严重,人类对水质提出了更高的要求,污水深度处理与回用技术兴起。污水处理厂的侧重点不再是核算污染物的排放量,而是如何改善水质。膜技术开始显现其独特优势。
  
  生物膜技术在20世纪60-70年代,随着新型合成材料的大量涌现再次发展起来,主要工艺有生物滤池、生物转盘、生物接触氧化、生物流化床等。目前,应用较多的膜处理技术主要有微滤(MF)、超滤(UF)、反渗透(RO)和膜生物反应器(MBR)技术。本世纪初的新加坡“Newwater”水厂就是采用在二级处理后加超滤膜及反渗透膜的方式进行再生水回用处理。
  
  以史为鉴,可知兴替。回顾整个历史过程,城市生活污水处理的足迹随着人类健康的需求、水环境质量的变化、污水的处理程度在一级级的加深,同时操作管理、资金占地等成本问题又推动了水处理工艺技术的不断进化,其操作、占地、程序步骤、能源资源的投入都在一点点地简化。人们对水质的需求越来越高,而处理过程却越来越趋于简便。有趣的是,无论近几年业界所看好的厌氧生物技术还是源分离终的土地灌溉,城市污水处理似乎又回到了它初的形式,尽管其中蕴含的科技含量早已不可同日而语。大繁若简,终还是归于自然。
上一页  [1]  [2]  [3]  [4]

上一篇:国内首套150摄氏度电泵井下传感器诞生

下一篇:十三五水利部节水浪潮来袭 水利灌溉迎重要机遇

相关资讯:

分享到:

首页|导航|登录|关于本站|联系我们